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Let us study an absolutely rigid body, free of supports, that is immersed 

in an infinite liquid. Assume that in the medium surrounding the body a 

pressure wave, whose potential is @(x - ct) = @(cl, is propagated. At 
time t = 0 its front comes into contact with the surface of the initially 

stationary body. Let us assume that the function a([) tends to some limit 

as&--. The latter means that the total pressure impulse of the wave 
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is assumed to be finite. 

We shall suppose that the body has two mutually perpendicular planes 

of symmetry perpendicular to the wave front (this symmetry is not only 

geometrical but also maintained with respect to the mass distribution in- 

side the body). This limitation is imposed only to avoid difficult com- 
putations. It will be shown below that the problem can be also solved for 

a body of a completely arbitrary shape. The weight of the body may be 

smaller, larger, or equal to the weight of the displaced liquid. We shall, 

however, neglect displacements of the body due to positive or negative 

buoyancy, 

It is to be proved that with the properties of the pressure wave 

described above, the displacement of the body tends to some limit (as 

t + =). Beside that, it is required to find that limit. 

The problem is solved within the acoustic approximation. 

1. Differential equations of the problem. When the above limitations 

regarding the symmetry of the body are imposed, the body will move 
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Displacement of a rigid body by a pressure wave 1139 

gradually in the direction of propagation of the pressure wave, i.e. in 

the direction of the X-axis. 

The differential equation of motion of the body can be written in the 

following fashion: 

dVJ 
M dt” =p ss aa 

x cos nxdS f p 

where II is the displacement of the body, M is the mass of the body, p is 

the density of the fluid, n is the direction of the exterior normal to 

the surface of the body &x, y, z, t) is the potential of the diffraction 

wave. 

The integration of (1.1) is performed over the entire surface of the 

body. 

The potential 4 has to satisfy 

AP- 
with the initial conditions 

39 
,=,=o 

the three-dimensional wave equation 

i a2Q 
-77--o 

c2 dt’ - (1.2) 

iat. t=O (1.3) 

As r = (x2 + y2 + z 2 Ii2 + 00 the function c$+ 0, ) and the following 

condition holds on the surface of the body 

ap am dU 

ax = - an + x cos nx (4.4) 

After integrating (1.1) twice with respect to time (with the limits 

from t = 0 to t), taking into account all available initial data, we ob- 

tain 

MU=P \\ Q* cos nxdS -k p \\ ‘p* cos nxdS (I.51 
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The displacements of the particles of the fluid are expressed in terms 
of these two functions by the formulas 

v = grada*, w = grad q* (1.7) 

where v is the displacement caused by the incident wave (i.e. a displace- 

ment which would not exist if there were no body in the fluid), and w 
is the additional displacement caused by diffraction. Since the incident 

wave propagates along the X-axis 
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The function +* has to satisfy equation 

A?’ z&z 

and the boundary condition at the surface of the body 

a(?* aw 
XT= 

- an + I; cm nx := (CT - 2’) cos nx 

( 1.8) 

11.9) 

Equations (1.9) and (1.10) are obtained by means of integrating (1.2) 

and (1.4) with respect to time and taking into account (1.3). Note that 

if the integral (0.1) is finite (as it was discussed earlier) then also 

the displacement v will be finite as t + M, and will tend to some limit 

l‘cc - ;iil a$ (1.11) 

The potential of the incident wave fi (and consequently also its in- 
tegral (0. ) has no singularities inside the region occupied by the body. 

One can write on this basis 

(1.12) 

where the integration on the right is performed over the entire volume 
occupied by the body. The other integral of (1.5) can be written accord- 

ing to (1.10) in the following form: 

P ss 1 
rp*cosnxdS = p -“gdS (1.13) 

When (L.12) and (1.13) are taken into account formula (1.5) becomes: 

2. Solution of the problem. In order to find U(t) it is necessary to 
know the function +* (x, y, I, t). which is, of course, impossible with 

the above general statement of the problem. 

Therefore, we shall not seek U(t), but only the final displacement of 

the body 

u, = ;li U (1) (2.1) 

Note that. in general, it is possible that such a limit may not exist. 
Thus, for instance, if the wave had the form of a pressure jump, then 

because of its action, the body would acquire some constant velocity [ 1 I. 
If, however, the total pressure impulse (0.1) is limited. then the fluid 
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particles will acquire finite displacements 
this case also the displacement of the body 
that this is the case and let us see where 

Thus, let for t + 00 t v + v_, U + U,, and 
(1.141 that 
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and one can expect that in 
will be finite. Let us assume 
this assumption will lead us. 

then it follows from equation 

where MO is the mass of 
necessary to determine 

the liquid displaced by the body. Thus, it is 

where 

(2.2) 

(2.3) 

Qa, * = fitcp* = f (I, y, 2) (2.4) 

The function Q5* has to satisfy equation (1.9). whose right-hand side 
approaches zero as t + ~0 (since it is proportional to the pressure in the 
diffraction wave). Thus #=* is a harmonic function. It damps out as r*m, 
and on the surface of the body it is subject to the condition 

aeco 
-= Acosnx 

an 
(A = u, - va, = const) 

From this it follows that I$,* can be identified with the flow potential 
of an infinite ideal fluid with the body under study moving in it at a 
constant velocity A in the direction of the X-axis. Besides, we are not 
interested in the function itself but only in the integral (2.3). 

We transform it by Green’s formula keeping in mind that as r = (x2 + 
y2 + z2p* + = the function c$,* tends to zero as r-’ ([2 I p. 370). 

Then we obtain 

At the right-hand side of this equation the integration is performed 
over the region where 4’,* is given, i.e. over-the entire volume occupied 
by the fluid surrounding the body. 

Thus the problem is reduced to the evaluation of the integral 

(2.7) 

This is nothing else. however, but the kinetic energy of the ideal in- 
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compressible fluid in a problem with the boundary condition (2.5). From 

this we can write immediately ([ 2 1 p. 379, 384) 

T = f MOpx A2 (2.8) 

where p’x is the coe’fficient of additional mass for the body studied 

(moving in the direction of the X-axis). 

On the basis of (2.6)- (2.8) and (2.5), expression (2.1) becomes 

MU, = M,,v, - M,pxA = M,,v, - MOy, (U, - v,) 

After solving this equation for U, we obtain 

“I, = (I -!- t*,) t* 
x 
+‘; , M, 

(2.9) 

(2.10) 

Thus, the assumption that there exists a limiting value of the dis- 

placement (2. I) did not lead us to any contradiction and is confirmed by 

the final formula (2. 10). 

The problem studied here can be also easily solved for an absolutely 

rigid body of a completely arbitrary shape. Such a body will experience 

a motion along all three coordinate axes due to the passing of an acoustic 

pressure wave with a finite impulse. In addition, it will rotate by some 

angles around the axes. By means of a reasoning similar to the foregoing 

one, using the information given in [2 I , p. 368, one can derive for the 

six unknown quantities (three displacement components and three rotation 

components) a 1 inear algebraic system. The coefficients of this system 

will depend on the 21st coefficient of additional masses and on the static 

moments. We shall not go into this, however, in greater detail, since the 

particular case studied above is of greatest interest, and since it 

sufficiently discloses the method of derivation also for the general case. 
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